For the past year I have been evaluating and working and even presented ElasticSearch, and I thought it would be good to showcase a series of article on ElasticSearch for .NET Developers. What it brings to the table when developing a software solution. I also did a talk on ElasticSearch at Montreal DevTeach, if you are interested in my slides feel free to view them on slideshare or my blog.
Without further adieu, lets get started and lets look at what ElasticSearch really is.
First off, ElasticSearch some consider it as ELK Stack but for new branding they have been trying to call themselves Elastic Stack rather, although the ELK has been stuck with many people and google searches, but we from here on we will call it just Elastic Stack.
So what does the Elastic Stack consist of you may wonder?
Basically the Elastic Stack consist of ElasticSearch, Logstash and Kibana. Lets go through them individually so that we can understand what each component does and brings to a software solution.
ElasticSearch
ElasticSearch
Some people may think that ElasticSearch is a database that we store data into like mysql, postgres or mssql, but I would say Elastic is not really a database since there is no db file and does not have relationships like SQL. Its more like a NOSQL solution but not quite like mongodb either. The best thing to describe it, I would say is think of it as a Search Engine where you store documents in. I know its confusing at first but don’t worry it will come clear later or once you start playing around with it.
Logstash
logstash
Kibana
kibana
Kibana is build with node.js and its a single page app (SPA) application.
Beats
beats
So here we sum up the main components of Elastic Stack, I will go through each component individually in upcoming blog post, going through install process to configuration.